interview Questions

Demo Video Course Content Interview Questions

 

1.What is IoT?

Answer: IoT stands for Internet of Things. It is basically a network using which things can communicate with each other using internet as means of communication between them. All the things should be IP protocol enabled in order to have this concept possible. Not one but multiple technologies are involved to make IoT a great success.

2.What are the important Components of an Internet of Things?

Answer: Many people mistakenly think of IoT as an independent technology. Interestingly, internet of things is being enabled by the presence of other independent technologies which make fundamental components of IoT.

The fundamental components that make the internet of things a reality are:-

1. Hardware-Making physical objects responsive and giving them the capability to retrieve data and respond to instructions

2. Software – Enabling the data collection, storage, processing, manipulating and instructing

3. Communication Infrastructure – Most important of all is the communication infrastructure which consists of protocols and technologies which enable two physical objects to exchange data.

3.What are the main Challenges of an Internet of Things (IoT)?

Answer: Like any other technology there are challenges which make the viability of IoT doubtful.

Security is one of the major concerns of experts who believe virtually endless connected devices and information sharing can severely compromise one?s security and well being. Unlike other hacking episodes which compromise online data and privacy with IoT devices can open gateway for an entire network to be hacked.

One such flaw is well presented by Andy Greenberg on wired.com where he works with hackers to remotely kill his Jeep on the highway. Another very relevant example is provided by W. David Stephenson in his post Amazon Echo: is it the smart home Trojan Horse? You can estimate the amount of personal and private data the connected devices will be producing once they are on a network. The major challenge for IoT tech companies is to figure out how the communication in the internet of things realm can be made truly secure.

4.What kinds of information do Internet of Things (IoT) objects communicate?

Answer: The answer depends on the nature of the object, and it can be simple or complex. For example, a smart thermometer might have only one sensor, used to communicate ambient temperature to a remote weather-monitoring center. A wireless medical device might, in contrast, use various sensors to communicate a person?s body temperature, pulse, blood pressure, and other variables to a medical service provider via a computer or mobile phone.

Smart objects can also be involved in command networks. For example, industrial control systems can adjust manufacturing processes based on input from both other IoT objects and human operators. Can network connectivity permit such operations to be performed in “real time” ? that is, almost instantaneously.

Smart objects can form systems that communicate information and commands among themselves, usually in concert with computers they connect to. This kind of communication enables the use of smart systems in homes, vehicles, factories, and even entire cities.

Smart systems allow for automated and remote control of many processes. A smart home can permit remote control of lighting, security, HVAC (heating, ventilating, and air conditioning), and appliances. In a smart city, an intelligent transportation system (ITS) may permit vehicles to communicate with other vehicles and roadways to determine the fastest route to a destination, avoiding traffic jams, and traffic signals can be adjusted based on congestion information received from cameras and other sensors.

Buildings might automatically adjust electric usage, based on information sent from remote thermometers and other sensors. An Industrial Internet application can permit companies to monitor production systems and adjust processes, remotely control and synchronize machinery operations, track inventory and supply chains, and perform other tasks.

IoT connections and communications can be created across a broad range of objects and networks and can transform previously independent processes into integrated systems. These integrated systems can potentially have substantial effects on homes and communities, factories and cities, and every sector of the economy, both domestically and globally.

5.What role does the network play in the Internet of Everything?

Answer: The network plays a critical role in the Internet of Everything? it must provide an intelligent, manageable, secure infrastructure that can scale to support billions of context-aware devices.

6.How might Wireless Communications affect the Development and Implementation of the Internet of Things (IoT)?

Answer: Many observers believe that issues relating to access to the electromagnetic spectrum will need to be resolved to ensure the functionality and interoperability of IoT devices. Access to spectrum, both licensed and unlicensed, is essential for devices and objects to communicate wirelessly. IoT devices are being developed and deployed for new purposes and industries, and some argue that the current framework for spectrum allocation may not serve these new industries well.

7.How does the Internet of Everything relate to the Internet of Things?

Answer: The “Internet of Everything” builds on the foundation of the “Internet of Things” by adding network intelligence that allows convergence, orchestration and visibility across previously disparate systems.

8.How is Industrial Internet of Things (IIoT) different from the Internet of Things (IoT)?

Answer: There are two perspectives on how the Industrial IoT differs from the IoT.

The first perspective is that there are two distinctly separate areas of interest. The Industrial IoT connects critical machines and sensors in high-stakes industries such as aerospace and defense, healthcare and energy. These are systems in which failure often results in life-threatening or other emergency situations. On the other hand, IoT systems tend to be consumer-level devices such as wearable fitness tools, smart home thermometers and automatic pet feeders. They are important and convenient, but breakdowns do not immediately create emergency situations.

The second perspective sees the Industrial IoT as the infrastructure that must be built before IoT applications can be developed. In other words, the IoT, to some extent, depends on the Industrial IoT.

For example, many networked home appliances can be classified as IoT gadgets, such as a refrigerator that can monitor the expiration dates of the milk and eggs it contains and remotely-programmable home security systems. On the Industrial Internet side, utilities are enabling better load balancing by taking power management decisions down to the neighborhood level. What if they could go all the way down to individual appliances? Suppose users could selectively block power to their devices during high-demand scenarios? Your DVR might power down if it wasn’t recording your favorite show, but your refrigerator would continue to work, resulting in less food spoilage. You could set your washer and dryer to be non-functional, and make an exception with a quick call from your smartphone. Rolling blackouts could be a thing of the past.

Innovators are only beginning to imagine the possibilities that may be achieved by taking advantage of devices and systems that can communicate and act in real time, based on information they exchange amongst themselves. As the Industrial IoT becomes better defined and developed, more impactful IoT applications can and will be created.

Internet of Things:-

Everyday consumer-level devices connected to one another and made smarter and slightly self-aware.

Examples: consumer cell phone, smart thermostat

Industrial Internet of Things:-

Equipment and systems in industries and businesses where failures can be disastrous.

Examples: individual health monitors and alert systems in hospitals

9.How will the Internet of Things (IoT) impact the sustainability of Environment or Business?

Answer: Internet of Things (IoT) can significantly reduce carbon emissions by making business and industry more efficient. “By managing street lights more efficiently you can save approximately 40% of energy used to make them run,” Will Franks says.

Bill Ruh, vice-president of GE Software, agrees. “We have created 40 applications,” says Ruh. “One of these, PowerUp, uses sensors to collect weather and performance data from wind turbines to enable operators to generate up to 5% more electricity without physically changing it, which generates 20% more profit for our customers.”

10. What is the difference between the Internet of Things (IoT) and the Sensor Business?

Sensors can be used in lots of different ways, many of which don’t need to be internet connected.

IoT also includes the control side, not just the sensing side.

11.What impacts will the Internet of Things (IoT) have on Economic Growth?

Answer: Several economic analyses have predicted that the IoT will contribute significantly to economic growth over the next decade, but the predictions vary substantially in magnitude. The current global IoT market has been valued at about $2 trillion, with estimates of its predicted value over the next five to ten years varying from $4 trillion to $11 trillion. Such variability demonstrates the difficulty of making economic forecasts in the face of various uncertainties, including a lack of consensus among researchers about exactly what the IoT is and how it will develop.

12. Why will the Internet of Things(IoT) be successful in the coming years?

As the telecommunication sector is becoming more extensive and efficient, broadband internet is widely available. With technological advancement, it is now much cheaper to produce necessary sensors with built-in wifi capabilities making connecting devices less costly.

Most important, the smartphone usage has surpassed all the predicted limits and telecommunication sector is already working on its toes to keep their customers satisfied by improving their infrastructure.As IoT devices need no separate communication than the existing one building IoT tech is very cheap and highly achievable.

13.How Might Cybersecurity affect the Development and Implementation of the Internet of Things (IoT), especially in the USA?

Answer: The security of devices and the data they acquire, process, and transmit is often cited as a top concern in cyberspace. Cyber attacks can result in theft of data and sometimes even physical destruction. Some sources estimate losses from cyber attacks in general to be very large?in the hundreds of billions or even trillions of dollars. As the number of connected objects in the IoT grows, so will the potential risk of successful intrusions and increases in costs from those incidents.

Cybersecurity involves protecting information systems, their components and contents, and the networks that connect them to intrusions or attacks involving theft, disruption, damage, or other unauthorized or wrongful actions. IoT objects are potentially vulnerable targets for hackers. Economic and other factors may reduce the degree to which such objects are designed with adequate cybersecurity capabilities built in. IoT devices are small, are often built to be disposable, and may have limited capacity for software updates to address vulnerabilities that come to light after deployment.

The interconnectivity of IoT devices may also provide entry points through which hackers can access other parts of a network. For example, a hacker might gain access first to a building thermostat, and subsequently to security cameras or computers connected to the same network, permitting access to and exfiltration or modification of surveillance footage or other information. Control of a set of smart objects could permit hackers to use their computing power in malicious networks called botnets to perform various kinds of cyber attacks.

Access could also be used for destruction, such as by modifying the operation of industrial control systems, as with the Stuxnet malware that caused centrifuges to self-destruct at Iranian nuclear plants. Among other things, Stuxnet showed that smart objects can be hacked even if they are not connected to the Internet. The growth of smart weapons and other connected objects within DOD has led to growing concerns about their vulnerabilities to cyber attack and increasing attempts to prevent and mitigate such attacks, including improved design of IoT objects. Cybersecurity for the IoT may be complicated by factors such as the complexity of networks and the need to automate many functions that can affect security, such as authentication. Consequently, new approaches to security may be needed for the IoT.

IoT cybersecurity will also likely vary among economic sectors and subsectors, given their different characteristics and requirements. Each sector will have a role in developing cybersecurity best practices, unique to its needs. The federal government has a role in securing federal information systems, as well as assisting with security of nonfederal systems, especially critical infrastructure. Cybersecurity legislation considered in the 114th Congress, while not focusing specifically on the IoT, would address several issues that are potentially relevant to IoT applications, such as information sharing and notification of data breaches.

14.There may be some questions on Linux OS, as it is most popular in IoT domain.

Answer: One can refer the same on the net on very basics such as what are the qualities of Linux OS? What are the features of Linux OS over other Operating Systems etc?

This set of IoT(Internet Of Things) interview questions and answers are useful for freshers and experienced level of job positions.

15.What impacts will the Internet of Things (IoT) have on Infrastructure and Smart Cities Sector?

Answer: The capabilities of the smart grid, smart buildings, and ITS combined with IoT components in other public utilities, such as roadways, sewage and water transport and treatment, public transportation, and waste removal, can contribute to more integrated and functional infrastructure, especially in cities.

For example, traffic authorities can use cameras and embedded sensors to manage traffic flow and help reduce congestion. IoT components embedded in street lights or other infrastructure elements can provide functions such as advanced lighting control, environmental monitoring, and even assistance for drivers in finding parking spaces. Smart garbage cans can signal waste removal teams when they are full, streamlining the routes that garbage trucks take.

This integration of infrastructure and service components is increasingly referred to as smart cities, or other terms such as connected, digital, or intelligent cities or communities. A number of cities in the United States and elsewhere have developed smart-city initiatives.

16.What impacts will the Internet of Things (IoT) have on Health Care Sector?

Answer: The IoT has many applications in the health care field, in both health monitoring and treatment, including telemedicine and telehealth. Applications may involve the use of medical technology and the Internet to provide long-distance health care and education. Medical devices, which can be wearable or nonwearable, or even implantable, injectable, or ingestible, can permit remote tracking of a patient’s vital signs, chronic conditions, or other indicators of health and wellness.36 Wireless medical devices may be used not only in hospital settings but also in remote monitoring and care, freeing patients from sustained or recurring hospital visits. Some experts have stated that advances in healthcare IoT applications will be important for providing affordable, quality care to the aging U.S. population.

17.What are the main Social and Cultural Impacts of Internet Of Things (IoT)?

Answer: The IoT may create webs of connections that will fundamentally transform the way people and things interact with each other. The emerging cyberspace platform created by the IoT and SMAC has been described as potentially making cities like “computers” in the open air, where citizens engage with the city “in a real-time and ongoing loop of information.”

Some observers have proposed that the growth of IoT will result in a hyperconnected world in which the seamless integration of objects and people will cause the Internet to disappear as a separate phenomenon. In such a world, cyberspace and human space would seem to effectively merge into a single environment, with unpredictable but potentially substantial societal and cultural impacts.

18.What is Bluetooth Low Energy (BLE) Protocol for an Internet of Things (IoT)?

Answer: Nokia originally introduced this protocol as Wibree in 2006. Also known as Bluetooth Smart this protocol provides the same range coverage with much-reduced power consumption as the original Bluetooth. It has similar bandwidth with narrow spacing as used by ZigBee. Low power latency and lower complexity make BLE more suitable to incorporate into low-cost microcontrollers.

Low power latency and lower complexity make BLE more suitable to incorporate into low-cost microcontrollers.

As far as the application is concerned BLE is in the healthcare sector. As wearable health monitors are becoming prevalent the sensors of these devices can easily communicate with a smartphone or any medical instrument regularly using BLE protocol.

19.What impacts will the Internet of Things (IoT) have?

Answer: Many observers predict that the growth of the IoT will bring positive benefits through enhanced integration, efficiency, and productivity across many sectors of the U.S. and global economies.

Among those commonly mentioned are agriculture, energy, healthcare, manufacturing, and transportation. Significant impacts may also be felt more broadly on economic growth, infrastructure and cities, and individual consumers. However, both policy and technical challenges, including security and privacy issues, might inhibit the growth and impact of IoT innovations.

20.Why is the Internet of Everything happening now?

Answer: The explosion of new connections joining the Internet of Everything is driven by the development of IP-enabled devices, the increase in global broadband availability and the advent of IPv6.

21.What are the top 5 Machine-to-Machine (M2M) applications in the world?

Answer: 1. Asset Tracking and/or Monitoring in some form or another (Stolen Vehicles, Fleet, Construction Equipment, Wood Pellets, Tank level monitoring, etc.) seems to be the biggest. Low data requirements, high volumes of devices, etc. It isn’t hot or particularly exciting, but it is changing the world in subtle ways and very quickly. New business models will spring from this.

2. Insurance Telematics is huge as if offers Insurance companies the opportunity to cut risk and drive better/more attractive pricing.

3. Utilities/Automated Meter Reading/Smart Grids – lots of regulation and investment into this at the moment. There a lot of national solutions as the requirements and business case are driven in very diverse ways.

4. Security has been an early adopter here. The requirements are quite heavy on the network as many of these applications have a fixed line legacy.

5. mHealth has been out there for a while but hasn’t really taken off. There are some exciting early adopters. Many of the established companies (largely built through acquisition) have some challenges moving quickly in this space, but when they get up to speed and the business models are established there will be a massive uptake.

6. Automotive is a big one – driven by consumers’ expectation of being always connected as well as regulation.

22.What impacts will the Internet of Things (IoT) have on Transportation Sector?

Answer: Transportation systems are becoming increasingly connected. New motor vehicles are equipped with features such as global positioning systems (GPS) and in-vehicle entertainment, as well as advanced driver assistance systems (ADAS), which utilize sensors in the vehicle to assist the driver, for example with parking and emergency braking. Further connection of vehicle systems enables fully autonomous or self-driving automobiles, which are predicted to be commercialized in the next 5-20 years.

Additionally, IoT technologies can allow vehicles within and across modes?including cars, buses, trains, airplanes, and unmanned aerial vehicles (drones) to “talk” to one another and to components of the IoT infrastructure, creating intelligent transportation systems (ITS). Potential benefits of ITS may include increased safety and collision avoidance, optimized traffic flows, and energy savings, among others.

23.Will IoT actually work over the internet or will it have its own dedicated wide area network?

Answer: Interoperability between various wireless and networking standards is still an issue and something that forums and standards bodies are trying to address. According to Franks, businesses have to collaborate on standards to create strong ecosystems for a range of industries, otherwise, the industry will remain fragmented.

“The IoT is a whole myriad of different ways of connecting things? it could be fixed, Wi-Fi NFC, cellular, ultra-narrow band or even Zigbee. You have to mix and match what is best for each task,” he says. “Interoperability is essential, for economies of scale.”

24.What will happen in terms of jobs losses and skills as IoT makes devices and robots more intelligent?

Answer: A Digital Skills Select Committee report to the House of Lords in February estimated that 35% of UK jobs would be lost to automation in the next 20 years. Does it echo the sort of thinking that Erik Brynjolfsson and Andrew McAfee?s The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies predict. Their answer is that you need to switch skills but to do this you need to switch the schools too.

Will Franks agrees. He saw when he launched his business in 2004 that a massive shortage in relevant skills can impede progress, so he was forced to look overseas. The same he says will happen with IoT unless we get schools and colleges to start gearing courses to meet the challenges of tomorrow?s automated economy.

It is a huge challenge and one which is a top three priority for Chi Onwuruh MP and Labour’s Digital Review. Digital inclusion, a data review and a focus on digital skills are she says essentially.

Last July the Digital Skills Taskforce called for the Government to review skills development in schools and colleges. The Perkins Review in November last year also called for a review into developing engineering skills to boost the UK economy.

What is clear is that the jobs landscape will change dramatically in the next 20 years. But it will be a slow process and whether or not we are prepared to cope with it will depend as much on education policy as digital policy. The robots are definitely coming but don?t hand your notice in just yet.

25.What are the elements of the Internet of Everything?

Answer: People: People will continue to connect through devices, like smartphones, PCs and tablets, as well as through social networks, such as Facebook and LinkedIn. As the Internet of Everything emerges, the interaction of people on the Internet will evolve. For example, it may become common to wear sensors on our skin or in our clothes that collect and transmit data to healthcare providers. Some analysts even suggest that people may become individual nodes that produce a constant stream of static data.

Process: This includes evolving technology, business, organizational and other processes that will be needed in order to manage and, to a large extent, automate the explosive growth in connections?and the resultant accumulation, analysis and communication of data?that will be inevitable in the Internet of Everything. Processes will also play an important role in how each of these entities?people, data, and things?interact with each other within the Internet of Everything to deliver societal benefits and economic value.

Things:This element includes many physical items like sensors, meters, actuators, and other types of devices that can be attached to any object, that are or will be capable of connecting to the network and sharing information. These things will sense and deliver more data, respond to control inputs, and provide more information to help people and machines make decisions. Examples of ?things? in the Internet of Everything include smart meters that communicate energy consumption, assembly line robots that automate factory floor operations and smart transportation systems that adapt to traffic conditions.

Data: Today, devices typically gather data and stream it over the Internet to a central source, where it is analyzed and processed. Is Such data expected to surpass today?s largest social media data set by another order of magnitude. Much of this data has very transient value. In fact, its value vanishes almost as quickly as it is created. As a result, not all generated data can be or should be stored. As the capabilities of things connected to the Internet continue to advance, they will become more intelligent and overcome the limits of traditional batch-oriented data analysis by combining data into more useful information. Rather than just reporting raw data, connected things will soon send higher-level information and insights back to machines, computers, and people in real time for further evaluation and decision making. The intelligent network touches everything?and is the only place where it?s possible to build the scalable intelligence required to meet and utilize this new wave of “data in motion”. This transformation made possible by the emergence of the Internet of Everything is important because it will enable faster, more intelligent decision making by both people and machines, as well as more effective control over our environment.

26.Which Companies and Organizations Support the Industrial IoT?

Answer: General Electric coined the term Industrial Internet in late 2012. It is effectively synonymous with the Industrial Internet of Things, and abbreviated as Industrial IoT or IIoT.

Many other companies and organizations are realizing the potential and significance of the Industrial IoT. A recent study conducted by Appinions and published in Forbes listed RTI as the #1 most influential company for the Industrial Internet of Things. Other influencers included Google, Cisco, GE, Omron, DataLogic and Emerson Electric.

The Industrial Internet Consortium also advocates for the advancement of the Industrial IoT. It is a not-for-profit organization that manages and advances the growth of the Industrial IoT through the collaborative efforts of its member companies, industries, academic institutions, and governments. Founding members include AT&T, Cisco Systems Inc., General Electric, IBM, and Intel.

27.What is the Internet of Everything?

Answer: The Internet of Everything is the intelligent connection of people, process, data and things.

28.What is a “Thing” in the context of the Internet of Things (IoT)?

Answer: The “Thing” commonly referred to by the concept of the Internet of Things is any item that can contain an embedded, connected computing device. A “Thing” in the IoT could be a shipping container with an RFID tag or a consumer’s watch with a WiFi chip that sends fitness data or short messages to a server somewhere on the Internet.

29.How the Internet of Things (IoT) makes a difference to the businesses?

Answer: Businesses focus on getting products to the marketplace faster, adapting to regulatory requirements, increasing efficiency, and most importantly, persisting to innovate. With a highly mobile workforce, evolving customer, and changing supply chain demand, the IoT can move your enterprise forward, starting today.

30.What are the major Privacy and Security Issues in case of Internet Of Things (IoT)?

Answer: Cyber attacks may also compromise privacy, resulting in access to and exfiltration of identifying or other sensitive information about an individual. For example, an intrusion into a wearable device might permit exfiltration of information about the location, activities, or even the health of the wearer.

In addition to the question of whether security measures are adequate to prevent such intrusions, privacy concerns also include questions about the ownership, processing, and use of such data. With an increasing number of IoT objects being deployed, large amounts of information about individuals and organizations may be created and stored by both private entities and governments.

With respect to government data collection, the U.S. Supreme Court has been reticent about making broad pronouncements concerning society?s expectations of privacy under the Fourth Amendment of the Constitution while new technologies are in flux, as reflected in opinions over the last five years.

Congress may also update certain laws, such as the Electronic Communications Privacy Act of 1986, given the ways that privacy expectations of the public are evolving in response to IoT and other new technologies. IoT applications may also create challenges for interpretation of other laws relating to privacy, such as the Health Insurance Portability and Accountability Act and various state laws, as well as established practices such as those arising from norms such as the Fair Information Practice Principles.